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Abstract. A constructive numerical-analytical method of solving coupled 8dimger equations

is presented when a Hamiltonian is a quadratic form of the momentum and contains a matrix
potential energy term, whichis, in particular, a superposition of Coulomb and polynomial potentials.
A technique for solving coupled radial Sddinger equations is developed. The method is based

on the matching of exact solutions, constructed as algebraic combinations of power series, power
functions, and a logarithmic function in the neighbourhood of regular singularty0, and of

the asymptotic expansions of solutions in the neighbourhood of irregular singulasityo. This

method of matching allows us to calculate accurately eigenvalues with corresponding wavefunctions
of a discrete spectrum, in(out)-solutions and $smatrix for a given value of energy from a
continuous spectrum, and resonance states. Wavefunctions derived are expressed in analytical
form. The method is applied to solving the Satlinger equation in the case of a matrix Hamiltonian

with Coulomb potential.

1. Introduction

In some quantum mechanical problems which are considered in solid-state physics, atomic
and nuclear physics, etc, Hamiltonians are differential-matrix operators. The matrix nature
of a radial Hamiltonian ensues from two reasons: either (1) the initial three-dimensional
Hamiltonian itself is matrix-valued (see e.g. [1-3]), or (2) the one is a scalar operator but, for
lack of spherical symmetry, there originates a system of coupled radial equations (e.g. [4—6]).
In this paper we present a constructive numerical-analytical approach to solving eigenvalue—
eigenfunction problems for systems of coupled radial equations without resorting to any finite-
difference procedure or to the variational method. The gist of this method of matching is as
follows:

(1) in the neighbourhood of = 0 (regular singularity) the solutions, obeying a boundary
condition atr = 0, are represented in terms of certain algebraic combinations of power
series, power functions, and logarithmic function (‘left-hand’ solutions);

(2) in the neighbourhood of = oo (irregular singularity)—in terms of certain asymptotic
expansions obeying a boundary conditiom at co (‘right-hand’ solutions);

(3) at some intermediate point= 7 these solutions are matched to form the eigenfunctions.

Matching of solutions can always be accomplished with any given accuracy by the proper
choice of matching poirit. Formally, this can be expressed in the following wayXet X (7)
denote a mathematical object to be calculated (eigenfunction, energySawelrix, its poles,
etc), then

Xexactz Ilm X(f) },; — OQ.
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In practical calculations, for the error &fto be estimated, it is helpful to use variations of the
matching poin¥ — 7 + 7.

The method of matching seems to be the most effective procedure in solving one-
dimensional eigenvalue—eigenfunction problems because it takes into account the analytical
structure of differential-matrix operator (in our case a radial Hamiltonian) as outright as merely
possible.

The remainder of this paper is organized as follows: in section 2 we give the reduction
of the Schodinger equation irR® to a coupled set of radial equations; in section 3 the
analytical solutions of these equations in the neighbourhood of the regular singutariiyare
constructed,; in sectin4 a method of derivation of the asymptotic expansions of the solutions
in the neighbourhood of the irregular singulanity= co is presented; in sectib a method of
matching is described, enabling the singular eigenvalue—eigenfunction problems to be solved;
in section 6 an example of the application of this method is presented, and finally, in section 7
we summarize results and make some general statements on extensions of the method to other
problems.

2. Reduction to coupled radial Schbdinger equations

We consider the Scbdinger equation
HWY(r) = EV(r) (2)

where the Hamiltoniad is anN x N matrix operator an@ is anN -component wavefunction.
HamiltonianH is supposed to be a quadratic form of the momentum. In this Hasan be
presented as follows:

2
H=Ap*+ Y  B,PP+V(r) )
m=-—2
wherep = —iV is a momentum operator (we set hére-"1), P? are the components of the

irreducible spherical tensor operator of the second rank composed in the usual way [7] of the
components of the symmetric tens®y, = p; px — %8ikp2 and A, B,, are constanftV x N
matrices. The potential energy term is supposed to be, generally speakiMgx ah matrix
function of the form

v
Vr)= Y Vi®. 9. Lyr L=rxp
k=—1
(the case of potential functions of much more general form is considered below, in section 7,
see also remark 2 in section 5).
We representV-column wavefunction () in the following form:

o0
Wir) =Y "> Ei®. )R (r) )
=0 =1
where R, (r) are radial wavefunctiong, is the quantum number of the orbital angular
momentum operatal = r x p, 7 is a set of quantum numbers of some operators chosen in
accordance with a Hamiltonian symmetg;, (0, ¢) is a complete orthonormalized set of the
N-components functions of the spaté(s?)", and

L?E (0, ¢) =1( + DE (8, ).
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‘Multiplying’ equation (1) from the left by, dQ E..(6, ¢) (the asterisk means the
Hermitian conjugation) we obtain the following system of an infinite number of coupled radial
equations:

2 v
<W% + Ar71£ + k_X_:Z Bkrk)R(r) =0 4)
whereW, A, andB; are constanto x oo matrices,R = (R;;) is aoco-dimensional column-
function.

In the case of a sufficiently high symmetry of the Hamiltonian, the infinite system (4) is
reduced to the infinite set, with each element of this set being a finite-dimensional coupled
system of ordinary differential equations (the simplest example is the radial equations for a
hydrogen atom, see also section 6). In cases when it is impossible to reduce equation (4) to
finite-order systems using the symmetry arguments, one truncates this infinite system using the
consideration of the accuracy, i.e. the invariability of results (in limits of given accuracy) with
the increase of a number of equations in the truncated system (see e.g. [8]). So the problem
of solving equation (4) is reduced to that of solving a system afupled radial equations of
the following form (henceforth we use functiof¥r) = r R(r) instead ofR (r)):

dr2

whereM = max0, v} + 2, F(r) is then-component radial function and, po, andg, are
constant: x n matrices. The matriy, = ¢2(E), whereE is the energy. The hermiticity
of the Hamiltonian imposes the following conditions on these matriees: w* > 0 and
this matrix is proportional to the inverse masses maix= —pg; g0 = 4§ + P§: o = 45

k > 1. Besides, there are some boundary conditions imposed on the solutioas @too
(see section 5).

o? d ¥
(rzw— + rpoE + kz_;qkrk>F(r) =0 r>0 (5)

3. Solutions. Neighbourhood of the regular singularityr = 0

Let us reduce the-component equation of the second order (5) to the@mponent equation

of the first order for the function (r) = (,4;,):

(r%—iak)x(r)=0 ©)

k=0

0 1 0 0
= = >
o (—w‘lqo (1—wpg) ) o ( —w g O) k=1

The Jordan structure of the leading matsx determines the structure of solutions of
equation (6) (and hence of the radial Sadinger equation (5)) and their behaviour in the
neighbourhood of the regular singular point& 0 (see [9]). In appendix A we show that in
the case of Hamiltonians of the form (2), matsixin the corresponding radial equation (6) is
diagonalizable, its eigenvalues are integers and we explicitly find these eigenvalues.

Let:

where

d=2n

Ag = To_locoTo =diag(oy, ..., 0%) 01>=0p =+ 20 =0y
Ay = Ty oy Ty k=1,....M

y=T5"x.
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Then
d M .
"o T AO“‘kElAkr Y. 7

Letus denote the values@fwhich are not equal to each otherbyand their multiplicities
byd,, p=0,....¢g, Zpdp =d,i.e.
A0=diag(ko,...,Ao,...,kg,...,kg).
N ——

———
do d,

Our goal is to construct all2linearly independent solutions of equation (7) corresponding to
the values of.,.
Letu(r) bed-component vector functions of the following form:

o0
u(r)y =r* Z urk
k=0

where{u;} ared-component constant vectors. It is not difficult to show (see [9]) that if the
function

s
Y0 =u® +sUnnuC V) + o+ @) =) (s>('” Ut
—o \P
p=0
is a solution of equation (7), then the following functions are also solutions of (7) (here the
index in brackets labels functions and does not designate some derivative):

k
k
y(k)(r) = Z ( )(In MPu*=P (r) s>k >0.
p=0 \P
It is convenient for further considerations to introduce a linear opegator > 0 which
acts by definition in the following way:
(s +1)

+1
T (Inr)P " u(r). (8)

L{nr)Pu(r)} =

Then
YO =u® ) + L1y V().

Designating by (r),i =1, ..., d, solutions of equation (7) corresponding to an eigenvalue
s, We seek them in the form

s—1 dp
YO () = 1D () + ZLP Z u([’,J)(r)C;',’j s=0,...,g 9
p=0 j=1
where
u® () = rk Zu/(:’l)rk u" =0 k< ks —hg
k=0

with unknown vector&ff”) and coefficientf;’fj which are to be determined. Relations (9)
can be presented in a matrix form, namely
s—1
Yir) = U'(r) + Y L,YP(r)C (10)
p=0
o0
Us(r) = r' U,frk (12)
=0
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whereY*(r) andU*(r) ared x d; matrix functions,C;, 0< p <sandU} ared, x d; and
d x d; constant matrices, respectively. Note that using the definition of the op&atee
can obtain an expression for the functidfigr) containing only function&/”(r),0< p < s
and matrice;. Really, as follows from (10)

s P~
YR =US )+ Y Y LyLy . LoyLy,UTP(R)CE ... CEC (12)
p=1lk=1 gqi
where the sum with the ‘tilde’ means the summation over sych. ., g, thats — p = ¢1 <
g2 < - <q <s—1,and atk = 0 we haver°(r) = U°(r). Finally, using the definition (8)
we obtain

s )4 ~
s s o (e * D(ge-1+1D) ... (q2+ 1) k
Y =U(r)+ Y U TPr) Y Y 0 (Inr)
p=1 k=1 g :

Xcglz T C;]Ak—lcgk : (13)

Substituting (13) into equation (7) we obtain the following recurrence relations:
min(k, M) 14
(k+xe—AQUI = > AUl =Y (p+1-qulC), (14)
=1 q=1

wherek = A, — Ag4, ..., N. As follows from the results of [9], power series in the expression

(12) for the functiond/” (r) converges uniformly in the whole intervdl, o) and each column
of the d x d,-dimensional matrix functior¥*(r) is a linear-independent solutioy(r) of
equation (7).

Thusitis clear thatto calculate radial wavefunctions with any given accuracy at an arbitrary
point7, 0 < 7 < oo, it is sufficient to take into account only a finite numBéof terms in the
power series in (11). The value 8fis limited only by the computer resources and round-off
errors in the process of computations.

The procedure of the calculation of constant matriggsand C!’, which completes the
calculation of the solution¥* (r), is described in appendix B.

Itis obvious thatdg+- - - +d,) solutionsY°(r), ... Y4(r) of the equation (7) thus obtained
are linearly independent and the-@rder matrix of the solutions and derivatives of equation (5)
assumes the following form (1s the unitk x k-matrix):

O(r) = <% r‘cl)l )To(Yo(r)...Yg(r)).

4. Construction of solutions in the neighbourhood of an irregular singularity atr = co

In this section we describe a method enabling us to construct solutions of coupled radial
Schibdinger equations (5) in the form of asymptotic expansions in the neighbourhood of an
irregular singularity at = co. We consider equation (5) for the functiéh= r R, supposing
that the numbeM > 0 is even (without loss of generality, since in the opposite case one can
make a substitution — r?).

In order to derive asymptotic expansions of the solutions we reduce equation (5) to the
first-order equations of the form

d
St B B e B g (9
r

whereg(r) = T 1F(r), and matricesB,jL andT,, should be found.
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Let us introduce the differential-matrix operator:
L r—lp(r)i +r20(r)
dr2 dr
where in the case of equation (5)
P(r) = w™py = const= Py
Q) =w tgo+q-1r+---+qur*) = Qo+ -+ Qpr'.

We present it in the following form (factorization of the operafof10]):

o_[d d
= I:d—r—a(’”)] |:d—r—/3(’”):|

wherea(r), B(r) are somen x n matrix functions to be found. It is easy to see that the
following relations hold:

r d
&2) =a(r)p(r) — -p(r)
r dr
P(r
D _ ety + 0.
The matrix equation of the Riccati type for the functjggr) follows from these equations,
namely:
P
d—ﬁ+ B+ — ﬁ+g=0. (16)
dr r r2
It is obvious that any solution of the equation
dF(r)
o B(r)F(r)
-

is a solution of equation (5). At first we find from equation (16) the asymptotic expansion of
the functiong(r) asr — oo:

Br) ~ 1z Y (Bo+Bu/r +Po/r?+- ). (17)
Substitution of the expansion (17) in equation (16) yields recurrence relations for mgjrices

k
D BBt Qui+ (Po+M—1-b)Bimp=0  k=01.... (18)
=0
Henceforth we suppose that all real eigenvalues of the m@iiarenonzeranddifferent
Now we can determine such matrfx, that
T Qu Ty = diages, ..., &)
g1 <& << & £1,...,&,._ <0 En 41, -+, &, > 0.

In order to resolve equation (18) with respectgjoit is convenient to make the following
substitution:

B = Bi =T ' BT Q= Q=T QT Po—> Po=T.'PoTw.

Then, att = 0 we obtain from equation (18)
Bg =—Q0y= diag(—e1, ..., —¢&,)

and we have two solutions for the matig which we mark by the superscripts ‘+' or":
B = xdiag(—e1) ", ... (—e,)"?)]. (19)
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Itis clear that there are_ real andn — n_ purely imaginary eigenvalues on the diagonal of
the matrixBg .

Choosing one of two signs of the root in (19), it is easy to calculate all matB;i’es
k=1,2,...from relations (18), namely

k—1
(BH); = —[QMk +(Po+M —1—k)BE,, ,+) BB } . (20)
k /ij [(BSE)” n (Bgt)jj] k—M/2 ; 1 Prk—1 i

Now we have equation (15) for the functigr(r) = T 'F(r), where the number
q+1= M/2is the rank of the singular point= co of equation (15), and explicit expressions
(20) for matrices(Bki),-j in it. Then, using results of [11], we derive asymptotic expansion of
the fundamentat x n matrix G*(r) of solutions of the equation (15) as— oo:

4q g—j+1
toN . (pt + +,.2 Z + T +
G (}") (RO+R1/}"+R2/}" +...)XeXp[jZODjm*'Dq.;.llnr
~Dyp/r — Diia/2r? = Diy/3r° — - } (21)

Each column of the matrix functio*(r) is a linear-independent solutiogi®(r) of the
equation (15). MatricesR,f and D,f, k = 0,1,2,..., satisfy the following recurrence
relations [11]:

0, k=0
DoRy — Ry Bo = { <=2
Z(Rsz—z — Dy R) —(k—qg—DRi_y1 k=12, ....
=0
It is convenient to choose the following conditions:
Dy = By RY=1 Df = diag (R =0 k=12...

then, for the diagonal matric@'t and matricesti with diagonal elements which equal zero,
we have

k=1
(D) = (B,fc + Z B,it_lRli> k=12, ... (22)
=1

in particular,(DY);; = (BY);; and

£ _ 1 ST _pE pEy (. 1\ pE i|
R = [(By)ii — (By) )] [;(RZ Pict = Bea R = k=0 = DRy ij
i k=12 ... 23)

Thus, using (21)—(23) we determine the fundamentaln matrix of solutions of coupled
radial Schodinger equations (5) in the neighbourhood of the irregular singulartyo:

T - (G*(r), G (r)).

Finally, the fundamentali2x 2n matrix of solutions of equation (5) and their derivatives
(we obtain derivatives from the ‘truncated’ formula (15), multiplied from the left by the matrix
T~) assumes the following form as— oo:

Poo(r) ~ (R0 (1), Q2+(r), Q20(r), R_(r)).

Here each column @b, is composed of the functions and derivati{(gzﬁf/dr) and we designate
by Q, Q24+, Qp, and2_ submatrices of the dimensiong R n_, 2n x n., 2n x n_and 2 x n..,
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respectively(n_ +n. = n), whose columns contain the following factors:

[ ratt 1/2 ratt 1/2
ex +le +o ], ex +e +..
Pl el } p[q+l< | }
s ratl
+i 1/2+... +i 1/2+...
exp| g CHilen_al e exp| o e
r rq+1 1 rq+l
/2 1/2
ex —le +o ], ex —le +..
Pl 71l } p[q+1< e | }
- rq+1 ] 12 rq+1 . 12
_ +... — +...
e><|0_q+1( 1&n_+] ] eXp[q+1( Ien] }
The detailed structure of the submatrices is evident (see (21)).
Note that if matricesv, po, qo, - . . , gu are real (usually this is the case in applications)

then it is easy to construct a real fundamental maclxﬁ(”"(r) of solutions and derivatives. It
has the following form as — oc:

D) ~ (ReQuo (1), ReQ4(r), REQo(r), IM4(1)).

5. Matching of solutions. Singular eigenvalue problem

In this section we describe a method of matching of ‘left-hand’ and ‘right-hand’ solutions
enabling a solution of singular eigenvalue problems for the systems of coupled radial
Schibdinger equations.

Let us consider equation (5) for radial wavefunctidng) with the following boundary
conditions imposed:

(x) F(r) — 0asr — 0 (the conditions fo (r) to be bounded as — 0 are also possible,
see e.g. [12,13]) and:

(a) asr — oo, |F(r)| decreases faster than any function of the ferm, o > 0 or:

(b) asr — oo, F(r) is bounded.

Let us designate by th-set of the problem the set of all valuesffat which a nontrivial
solution F(r) = F(r; E) of equation (5) exists satisfying boundary conditigrs and (a).
In turn, we designate by thBC-set the set of all values df at which a nontrivial solution
F(r; E) of equation (5) exists, satisfying conditio® and(b). At last we define th&-set:
C-set= DC-set\ D-set. In application®- andC-sets are in fact the discrete and continuous
spectra, respectively. By the term ‘discrete spectrum’ we mean isolated eigenvalues from
the point spectrum. A somewhat different structure is implied by this term in the theory of
operators [14]. Note, that these definitions are convenient from the computational point of
view, but they are not mathematically rigorous (see e.g. [12]).

Remark 1. Continuous spectrum is absent when> 2, detg,, # 0. More general boundary
conditions are allowed at = oo, butwe assume, as usually is the case in physical applications,
thatgy <OatM > 2.

Solving of the eigenvalue problem is based on the matching of local solutions, which were
determined in the neighbourhoods of singular points 0, cc.

Linearly independent ‘left-hand’ solutions of equation (5) and their derivatives compose
some 2 x 2n matrix ®(r) at a pointr. Solutions which behave correctly correspond to the
first ng columns of®(r) (in fact, ng = n but we write dowrng for the sake of generality)
and we denote this submatrix of the dimensianng by ®q(r). Suppose then that we have



Accurate solutions of coupled radial Séldinger equations 5485

computed with desired accuracy the series in the ‘left-hand’ solutigjis) at some point
7 € (0, 00), and letdg = do(F).

Linearly independent ‘right-hand’ solutions and their derivatives compose at aspaint
2n x 2n matrix @, (r) which has the following form as — oo:

Do ~ (Q260(r), $2+(r), Q20(r), 2-(r))

where dimensions of the submatric®s, + 0 areequalto2 x n_, 2n x n4, 2n x n_, and
2n x n., respectively (here_, n, are the numbers of negative and positive eigenvalues of
the matrixw =g, n = n_ +n4). The columng,,(r) correspond to solutions which diverge
exponentially and column&(r) to exponentially decaying solutions as— co. Columns
Q. (r) correspond to oscillating solutionsas> co. Suppose that we have calculated ‘right-
hand’ solutions with desired accuracy at the péiohoosing it at a ‘sufficiently’ large distance
from the origin. If we are interested in the discrete spectrum we should compute the matrix
Q0 = Q0(7), on the other hand, to determine the complete spectrum we should compute
matricesQ.o = Q40(7).

Remark 2. In some cases it is impossible to match with desired accuracy the ‘left-hand’ and
‘right-hand’ solutions at a poin£, then it is necessary to use either the power series expansion
for the fundamental matrix in the neighbourhood(s) of intermediate point(s) or a numerical
integration of (5) over the intervakg, r-,), where0 < rg < roo < 0.

5.1. Discrete spectrum

At first we compose a matrixk of the dimension 2 x (n_ +ng) from the matrice$2o and®g
at some value of the enerdy.

A = (S0, —do) = A(E).

Let (n_ + np)-dimensional vectors®, ..., a'® form a basis of the null-space of the matrix
A. It means that the following equality holds:
Aa®? =0 i=1,...,
a l (07 (24)

o =dimKer(A) = (n_ +ng) —rankA.

Note that ifa = 0 then such vectors do not exist, so this particular valug dbes not belong
to the discrete spectrum. We present vectd?sin the following form:

where o}’ and a) are no-dimensional and:_-dimensional vectors, respectively. The

procedure of the calculation of an eigenvalie= E, from the discrete spectrum within
some intervalE', E") is reduced to solving the equation

w(E)=0 (25)
where
detA(E) if matrix A is quadratic
det[A*(E)A(E)] if matrix A is not quadratic.
Then after determination of an eigenvaldg from equation (25) and solving equation (24)

we obtain a basis af linearly independent solutions of the equation (5) and their derivatives
for the valueE, from the discrete spectrum:

w(E) = {

oD (r) = $0(r)ace =1...,a 26
" { Po(r)ay’, r<r l (20)
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5.2. Continuous spectrum

Inthe case of the continuous spectrum we compose a niatithe dimension2x (n+n.+no)
from the matricef2.9, ®¢ at a given value of the enerdy from theC-set:

B = (24, Q0. Q. —®o) = B(E).
Let the vectors), j =1, ..., B of the dimensiornin + . + ng) form a basis of the null-space
of the matrixB:

BbY) =0 i=1...,

_ / & (27)
B =dimKer(B) = (n +n+ +ng) — rankB.

Note, that if3 = 0 then such vectors do not exist and this valu&afoes not belong to the
spectrum of the problem. Similar to the problem of the discrete spectrum we present vectors
b in the form:

o — (% o1
- bé]) J = v"'?ﬁ

Wherebéj ), bY) arenq-vectors andn + n4)-vectors, respectively. Then, solving equation (27)
with respect ta>), we obtain a basis gf linearly independent solutions of the equation (5)
and their derivatives corresponding to a given valtuiom the continuous spectrum;

r

(Q4(r), Qo(r), Q_(r))bY) j=1....8 (28)

5.3. S-matrix, in(out)-solutions

In this section we construct astmatrix and in(out)-solutions for a given value from the
continuous spectrum (we seg = n). It is convenient to represent 2 (2n + n,) matrix B
and vector?, ..., b™ from (27) in the following form:

B = (Q_, Q4. Q0. —®o) = (C2_, B)
whereE is a(2n x 2n) matrix and

O, .. b)) = (1X> = (}1()

whereX is a 21 x n+ matrix to be determined. We have

5(1)=o

Hence
X=-E1Q_.
Let columns of the matrif,,, be normalized and
ko = —1(B§)n_+an_+a = ka(E) Vg = Zig ? = vy (E) a=1..., n:

Then, coefficients

determine some unitary matri® = (X,5) = X(E) that describes the scattering. Since this
matrix is determined with no relation to the initial three-dimensional Hamiltonian (2), it may
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differ from the true partiab-matrix. This is evident in the case of radial equations describing
a ‘scalar’ particle 4 = 1) in a spherically symmetric potential. In this case= —»S,
wheren = (—1)"*1. A similar examplef = 2, = = (—1)?*VS) is presented in section 6.
Choosing vectors™®, ..., 5™ in the form of(}; ), we obtain partial in-solutions in (28). Out-
solutions are constructed analogously. All these scattering StAt€¥ (r; E) are normalized

t0 271 v, 8(E — E')84p (7 — 00). In the case of a real Hamiltonian these solutions are the
complex conjugate of each other and matrigeandsS are symmetric.

Using a procedure which is analogous to the one of section 5.1, it is possible to calculate
the poles of ars-matrix at complex energies = E +iG, (G < 0) and the corresponding
eigenfunctions, i.e. resonance states; besides, if required, one can calculate antibound states
[3,15] at real energies.

6. Example of applications: discrete and continuum hole Coulomb states

In this section the method is applied to solving the $dimger equation in the case of a matrix
Hamiltonian with a nontrivial ‘spin—orbit-coupling’ term and Coulomb potential energy term,
namely the Luttinger Hamiltonian [1]. This Hamiltonian describes hole Coulomb states, like
shallow acceptor or exciton states in semiconductors with degenerate valence bands.

In the framework of the so-called spherical approximation [16], the Luttinger Hamiltonian
can be written as [16,17]
2z

H=p* —u(P?. 7%+ (29)
r

Herefhp is the momentum operatoP® andJ@ are irreducible spherical tensor operators

of the second rank [7], derived from the componentp,adind the vectod representing the
pseudospin angular momentum with= g; uw = (4y, + 6y3)/5y1, wherey; are empirical
constants—so-called Luttinger parameters of the valence band [1]; the energy and the distances
are measured in units &, = mee*/2hi?y, and ofa = hky1/moe? respectivelymg is the

mass of a free electron, is the static permittivity of the crystal is the magnitude of the
impurity ion charge.

The Hamiltonian (29) is spherically symmetric in the coupled orbital and spin spaces and
the total angular momentu# = L +J is a constant of motion. Wavefunctions can be written
as [17]

W = r H(BFy + Fo)lljfmy) + (Fy — BFON +2, jfmg)) (30)
where the functionsljfm ) are eigenfunctions of the total angular momentum in ithe
j coupled schemeFy(r) and F.(r) are the ‘heavy-' and ‘light-hole’ radial functions,
respectively, and the constaht= 3~/*[(f +3)/(f — H)]"/2. Then the Sctirdinger equation
is reduced to coupled sets of radial equations §8)£ 2, n = 2), whereF = (?Z) with a
diagonal matrixw: w = diag(1 — u, 1 + ). Each set is characterized by a given valug of
and the parity—1)".

It is interesting to note that in the present case equation (5) is similar to a system of two
coupled ‘hydrogen-like" radial equations with two different masses of the particle, namely
1/(1 — ) (heavy hole) and A(1 + ) (light hole) and with a coupling which arises due both
to the potential energy term and to terms containing differential operators.

The results of sections 3-5 give a complete solution to the problem of finding discrete and
continuum eigenstates of the Hamiltonian (29). Below we present results of calculations for
states withf = % and! = 0. In this case matrices of coefficients in (5) are as follows:

_ 0 3u (mn—=2 2—pu _ _
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Table 1. Energies (in the units oR,) of discrete statesf{ = % [ = 0). ‘Material’ parameters:
Z=1,u=0.766.

Level number 1 2 3 4 5
Present method —2.2637 —0.6728 —0.3453 —0.2107 -0.1424
[18,19] —2.264 -0.673 -0.347 — —

Level number 6 7 8 9 10

Present method —0.1026 —0.0881 —0.0764 —0.0599 —0.0481

In table 1 we present results of the calculation of energies of the ten lowest discrete states
which are characterized by the valyés- %,l = 0 and material parameters= 1, = 0.766
in the Hamiltonian (29). Note that these values are in fact the energies of even states of shallow
acceptor impurities in Ge, the lowermost of which is the ground state energy. For a comparison
we also present available data of the previous calculations based on the numerical integration of
coupled radial Sclidinger equations [18,19]. All digits in the results of the present calculation
are significant and there is a natural way to control errors in our calculations: the results must
be stable when changing the matching point. Note that simultaneously with the energies of
discrete levels we have determined analytically defined (sections 3-5) wavefunctions.

As follows from the results of section 5, to calculate the wavefunctions of the continuous
spectrum of the Hamiltonian (29) one should match two ‘left-hand’ solutions of (5) and
linear combinations of four linearly independent ‘right-hand’ solutions. We choose linear
combinations of ‘right-hand’ solutions that yield radial in-solutions, whose asymptotic
behaviour { — o0) is as follows:

in (—1)l+1exp(—ikHr) + SuHu eX[XikH}")
F ~ 1/4
H(r) 2iky (Ji:—::’) - Sy EX[X”(LV)

- 1/4 :
Fr) ~ 52— Z (11—%) S eXpiknr)
2ike \ (—1)"*Lexp(—ik,r) + S.. explik,r)

i—l

(31)

whereky 1 = (E/(1F n)Y/?, coefficientsS,s, @, 8 = H, L are the elements of the partial
S-matrix which corresponds to a given value oind the parity.
Since the radial Hamiltonian is real, tiematrix is symmetric:

Sap = Spa a,B=H,L. (32)
For theS-matrix is unitary and symmetric, we have

SiL = —SHH‘?”—”. (33)
SrH

In table 2 the results of calculations are presented of the pariahtrix as a function
of the energyE for the states of continuous spectrum which are characterized by the same
values of quantum numbers as in tablef1:= g [ = 0 and the same material parameters:

Z =1, = 0.766. It corresponds to scattering of holes by attractive Coulomb potential of an
impurity ion in Ge.

Only values of element$y ; andSy;, are presented in the table because the rest of them is
determined unambiguously by relations (32) and (33). All digits in results presented in table 2
are significant. In the present case of states of continuous spectrum both unitarity + symmetry
of S, and stability of results when changing the matching point can be used to control errors
in computations.



Accurate solutions of coupled radial Sélainger equations

Table 2. PartialS-matrix as a function of the energ¥ (n the units ofR,,) for the state withf = g

[ = 0. ‘Material’ parametersZ = 1, u = 0.766.

E Suu SHL
0.5 -0.84791-i0.51751 —-0.08332-i0.07927
1.0 -0.67008-i0.72629 —0.14272+i005587
20 -0.48817+i085249 —0.14207 +i012152
50 -0.83575+i051246 —0.16663 +i010557
10.0 -0.98366—i0.02632 —0.17095 +i004992
20.0 -0.81513-i0.56022 —0.14732-1i0.00387
50.0 -0.30082—-i0.94783 —0.09694—i0.04160
100.0 +009896-—i0.99196 —0.06290-i0.04758
500.0 +069179-i0.72111 -0.01856—i0.03281

7. Conclusions

A numerical-analytical method has been developed for solving a@8uttger equation, when

a matrix Hamiltonian is a quadratic form of the momentum and contains the potential
energy term of a rather general form, in particular, Coulomb and polynomial potentials.
Reduction to a system of coupled radial equations is described and the behaviour of radial
functions asr — 0 andr — oo is explicitly derived. A method of solving coupled
radial Schédinger equations, based on the matching of exact solutions, constructed as
algebraic combinations of convergent power series and logarithmic function, and of asymptotic
expansions of solutions in the neighbourhood of an irregular singularity=ato has been
developed. Using the matching method one can calculate the following for radial matrix
Hamiltonians: (1) in/out-solutions, (2-matrix, (3) poles of resolvent with corresponding
eigenfunctions, in particular, poles ¢tmatrix—bound, antibound and resonance states
included.

The wavefunctions calculated are represented in analytical form.

The method is applied to solving Sélainger equation in a case of matrix Hamiltonian [1]
describing discrete and continuum Coulomb states of charge carriers in semiconductors with
degenerate valence bands. Analytical expressions for the wavefunctions have been derived,
the energies of ten lowest discrete states of definite symmetry have been calculated and partial
S-matrix, describing the scattering of holes by Coulomb potential of an impurity ion, has been
calculated for the first time.

We note in conclusion that the method of matching can be extended to the following
important cases:

(1) Matrix potentials of the form

Vir)~ Y Vi@, ¢. Dyt

r—0
k=—1
0 ~
V) ~r' Y Vi@, . Dyr r— 00 0 < v = integer
k=0

(2) Problems on intervalg:, b), where—oco < a < b < +oo.
(3) First-order Dirac-type equations.
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Appendix A. The structure of the leading matrix «g

In this appendix we show that in case of Hamiltonians under consideration rogtisxa
simple one and all its eigenvalues are certain integers.

Let us first consider indicg$, t) of the vector-functiorF (-) in equation (5). Let quantum
numbersly, Iz, ..., I,, be presented in the indicé€s t) respectivelyv(1), v(2), ..., v(ng)
times, i.engis the number of different valuesbih the indices o (+). Letly <o < -+ < ;.
Obviously, Y%, v(k) = n, i.e. v(k) is a multiplicity of z for a given/,. According to the
Wigner—Echart theorem [7] and using the form of the maigxalong with the following
relations for the reduced matrix elements:

LPIY e o ré 72 — D€ +1+ Déy

(& =DE+1+1D), I'=1
PPyt ocrt =2 (¢ +1+ D¢ +1+3), I'=1+2
(& =D —-1-2), I'=1-2

we obtain that if the indices of () are ordered in a definite way, namely, when the index
i = (I, r) increases the value 6tdoes not decrease, the following properties hold:

) =hL+2k—-1),k=1,...,n0.
(2) The eigenvalues of the matiig are the following numbers (corresponding multiplicities
are written down in parenthesis):

I +1(v(D)), ..., L+ 1(v(no)), —l1(v(D)), ..., =l (v(no)).
(3) Corresponding linear-independent eigenvectors of the mataempose a2x 2n matrix
of the form
X v
XD YD
where
L IEN)
1\1 2 * 11, 2 0
¥ — ® . vy — @) '
0 Lono) ) * Lo
D=diag( 1+1 ,..., [,,+1) D=diag( —li ,.... —ly )
\.,.z - _ \,-’ ——
viptimes vingtimes vptimes vingtimes

aren x n matrices and Jlis the unitk x k£ matrix.
(4) As follows from item (3) matrixyg is a simple one—it is similar to a diagonal matrix.
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Appendix B. Calculation of matricesU;’ and C?

We putU! = 0, if k < 1, — A,. Note that matricez‘.],{’pw are defined ambiguously. For
definiteness we set them in the following form:

0
vl = ( 1) (B1)
o}

where Q 0’ are zero matrices of the dimensions equa(Ei;é dy) x dy] and [(Zzg:p,rl dy) x
dp], respectively, 1 is the unid, x d,)-matrix.

Let us consider equation (14) successively foreach 0,1,...,g. If p = 0 then all
matricesU?, k = Ao — Ag + 1,..., N are easily calculated.

The casgp > 0. If k # A, — A, for anys, 0 < ¢ < p in equation (14) then the calculation
of matricesU; _, is straightforward.

Ifk=2x— ig for somet, 0 < ¢ < m, then the determination df;”_, becomes more
complicated. Using the fact that matridé8, C;"(k < A, —X,, [ > t) were already determined
we obtain

(v — AU, = —@+ DU}, C +H]" (B2)
where
min(k, M) m
Htm — Z A[U]Z”_l _ Z(m +1— p)UIZ”*PCle_p.
=1 p=1

It is convenient for further consideration to rewrite equation (B2) using index notations:

d;
(v = A0)ii (U5 i = —(t + 1) Z(U,{I_,\g)ij(clm)jw +(HM)ir. (B3)
j=1
As is easily seen, the left-hand side of equation (B3) equals zero for a giveniindéeen
i=do+---+d,_1+1, ...,do+---+d,_1 +d,. Therefore, in this case we put

W35 =0 (B4)
and using our definition (B1) we can calculatesalues of(C}") ;; corresponding just to these
values of the index:
(Htm)do"'”""dt—lﬁ,i’

M= ——"17
Then using equation (B4) in the case when indeXdo+- - - +d,—1+1,...,do+- - -+d,_1+d,
we have
(H™)ji
WU} iir = ———"—.
MR O — Ao

Finally, changing the value of indekstep by step from 1 td, k fromx,, — 1, to N, m from
0 to g we compute all the matrices we need.
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