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Abstract. A constructive numerical-analytical method of solving coupled Schrödinger equations
is presented when a Hamiltonian is a quadratic form of the momentum and contains a matrix
potential energy term, which is, in particular, a superposition of Coulomb and polynomial potentials.
A technique for solving coupled radial Schrödinger equations is developed. The method is based
on the matching of exact solutions, constructed as algebraic combinations of power series, power
functions, and a logarithmic function in the neighbourhood of regular singularityr = 0, and of
the asymptotic expansions of solutions in the neighbourhood of irregular singularityr = ∞. This
method of matching allows us to calculate accurately eigenvalues with corresponding wavefunctions
of a discrete spectrum, in(out)-solutions and anS-matrix for a given value of energy from a
continuous spectrum, and resonance states. Wavefunctions derived are expressed in analytical
form. The method is applied to solving the Schrödinger equation in the case of a matrix Hamiltonian
with Coulomb potential.

1. Introduction

In some quantum mechanical problems which are considered in solid-state physics, atomic
and nuclear physics, etc, Hamiltonians are differential-matrix operators. The matrix nature
of a radial Hamiltonian ensues from two reasons: either (1) the initial three-dimensional
Hamiltonian itself is matrix-valued (see e.g. [1–3]), or (2) the one is a scalar operator but, for
lack of spherical symmetry, there originates a system of coupled radial equations (e.g. [4–6]).
In this paper we present a constructive numerical-analytical approach to solving eigenvalue–
eigenfunction problems for systems of coupled radial equations without resorting to any finite-
difference procedure or to the variational method. The gist of this method of matching is as
follows:

(1) in the neighbourhood ofr = 0 (regular singularity) the solutions, obeying a boundary
condition atr = 0, are represented in terms of certain algebraic combinations of power
series, power functions, and logarithmic function (‘left-hand’ solutions);

(2) in the neighbourhood ofr = ∞ (irregular singularity)—in terms of certain asymptotic
expansions obeying a boundary condition atr = ∞ (‘right-hand’ solutions);

(3) at some intermediate pointr = r̂ these solutions are matched to form the eigenfunctions.

Matching of solutions can always be accomplished with any given accuracy by the proper
choice of matching point̂r. Formally, this can be expressed in the following way: letX = X(r̂)
denote a mathematical object to be calculated (eigenfunction, energy level,S-matrix, its poles,
etc), then

Xexact= lim X(r̂) r̂ →∞.
0305-4470/99/295477+16$30.00 © 1999 IOP Publishing Ltd 5477
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In practical calculations, for the error ofX to be estimated, it is helpful to use variations of the
matching point̂r → r̂ + δr̂.

The method of matching seems to be the most effective procedure in solving one-
dimensional eigenvalue–eigenfunction problems because it takes into account the analytical
structure of differential-matrix operator (in our case a radial Hamiltonian) as outright as merely
possible.

The remainder of this paper is organized as follows: in section 2 we give the reduction
of the Schr̈odinger equation inR3 to a coupled set of radial equations; in section 3 the
analytical solutions of these equations in the neighbourhood of the regular singularityr = 0 are
constructed; in section 4 a method of derivation of the asymptotic expansions of the solutions
in the neighbourhood of the irregular singularityr = ∞ is presented; in section 5 a method of
matching is described, enabling the singular eigenvalue–eigenfunction problems to be solved;
in section 6 an example of the application of this method is presented, and finally, in section 7
we summarize results and make some general statements on extensions of the method to other
problems.

2. Reduction to coupled radial Schr̈odinger equations

We consider the Schrödinger equation

H9(r) = E9(r) (1)

where the HamiltonianH is anN×N matrix operator and9 is anN -component wavefunction.
HamiltonianH is supposed to be a quadratic form of the momentum. In this caseH can be
presented as follows:

H = Ap2 +
2∑

m=−2

BmP
(2)
m + V (r) (2)

wherep = −i∇ is a momentum operator (we set here ¯h = 1),P (2)m are the components of the
irreducible spherical tensor operator of the second rank composed in the usual way [7] of the
components of the symmetric tensorPik = pipk − 1

3δikp
2 andA, Bm are constantN × N

matrices. The potential energy term is supposed to be, generally speaking, anN × N matrix
function of the form

V (r) =
v∑

k=−1

Vk(θ, ϕ,L)r
k L = r × p

(the case of potential functions of much more general form is considered below, in section 7,
see also remark 2 in section 5).

We representN -column wavefunction9(r) in the following form:

9(r) =
∞∑
l=0

∑
τ=1

4lτ (θ, ϕ)Rlτ (r) (3)

whereRlτ (r) are radial wavefunctions,l is the quantum number of the orbital angular
momentum operatorL = r × p, τ is a set of quantum numbers of some operators chosen in
accordance with a Hamiltonian symmetry;4lτ (θ, ϕ) is a complete orthonormalized set of the
N -components functions of the spaceL2(S2)N , and

L24lτ (θ, ϕ) = l(l + 1)4lτ (θ, ϕ).
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‘Multiplying’ equation (1) from the left by
∫
S2 d�4∗l′τ ′(θ, ϕ) (the asterisk means the

Hermitian conjugation) we obtain the following system of an infinite number of coupled radial
equations: (

W
d2

dr2
+Ar−1 d

dr
+

v∑
k=−2

Bkrk
)
R(r) = 0 (4)

whereW, A, andBk are constant∞×∞ matrices,R = (Rlτ ) is a∞-dimensional column-
function.

In the case of a sufficiently high symmetry of the Hamiltonian, the infinite system (4) is
reduced to the infinite set, with each element of this set being a finite-dimensional coupled
system of ordinary differential equations (the simplest example is the radial equations for a
hydrogen atom, see also section 6). In cases when it is impossible to reduce equation (4) to
finite-order systems using the symmetry arguments, one truncates this infinite system using the
consideration of the accuracy, i.e. the invariability of results (in limits of given accuracy) with
the increase of a number of equations in the truncated system (see e.g. [8]). So the problem
of solving equation (4) is reduced to that of solving a system ofn coupled radial equations of
the following form (henceforth we use functionsF(r) = rR(r) instead ofR(r)):(

r2w
d2

dr2
+ rp0

d

dr
+

M∑
k=0

qkr
k

)
F(r) = 0 r > 0 (5)

whereM = max{0, v} + 2, F(r) is then-component radial function andw, p0, andqk are
constantn × n matrices. The matrixq2 = q2(E), whereE is the energy. The hermiticity
of the Hamiltonian imposes the following conditions on these matrices:w = w∗ > 0 and
this matrix is proportional to the inverse masses matrix;p0 = −p∗0; q0 = q∗0 + p∗0; qk = q∗k ,
k > 1. Besides, there are some boundary conditions imposed on the solutions atr = 0,∞
(see section 5).

3. Solutions. Neighbourhood of the regular singularityr = 0

Let us reduce then-component equation of the second order (5) to the 2n-component equation
of the first order for the functionχ(r) = ( F(r)

rdF/dr

)
:(

r
d

dr
−

M∑
k=0

αk

)
χ(r) = 0 (6)

where

α0 =
(

0 1
−w−1q0 (1− w−1p0)

)
αk =

(
0 0

−w−1qk 0

)
k > 1.

The Jordan structure of the leading matrixα0 determines the structure of solutions of
equation (6) (and hence of the radial Schrödinger equation (5)) and their behaviour in the
neighbourhood of the regular singular pointr = 0 (see [9]). In appendix A we show that in
the case of Hamiltonians of the form (2), matrixα0 in the corresponding radial equation (6) is
diagonalizable, its eigenvalues are integers and we explicitly find these eigenvalues.

Let:

d ≡ 2n

A0 = T −1
0 α0T0 = diag(σ1, . . . , σ2n) σ1 > σ2 > · · · > σ2n = σd

Ak = T −1
0 αkT0 k = 1, . . . ,M

y = T −1
0 χ.
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Then

r
dy

dr
=
(
A0 +

M∑
k=1

Akr
k

)
y. (7)

Let us denote the values ofσk which are not equal to each other byλp and their multiplicities
by dp, p = 0, . . . , g,

∑
p dp = d, i.e.

A0 = diag(λ0, . . . , λ0︸ ︷︷ ︸
d0

, . . . , λg, . . . , λg︸ ︷︷ ︸
dg

).

Our goal is to construct all 2n linearly independent solutions of equation (7) corresponding to
the values ofλp.

Let u(r) bed-component vector functions of the following form:

u(r) = rλ
∞∑
k=0

ukr
k

where{uk} ared-component constant vectors. It is not difficult to show (see [9]) that if the
function

y(s)(r) = u(s) + s(ln r)u(s−1)(r) + · · · + (ln r)su(0)(r) ≡
s∑

p=0

(
s

p

)
(ln r)pu(s−p)(r)

is a solution of equation (7), then the following functions are also solutions of (7) (here the
index in brackets labels functions and does not designate some derivative):

y(k)(r) =
k∑

p=0

(
k

p

)
(ln r)pu(k−p)(r) s > k > 0.

It is convenient for further considerations to introduce a linear operatorLs , s > 0 which
acts by definition in the following way:

Ls{(ln r)pu(r)} = (s + 1)

(p + 1)
(ln r)p+1u(r). (8)

Then

y(s)(r) = u(s)(r) + Ls−1y
(s−1)(r).

Designating byy(s,i)(r), i = 1, . . . , ds solutions of equation (7) corresponding to an eigenvalue
λs , we seek them in the form

y(s,i)(r) = u(s,i)(r) +
s−1∑
p=0

Lp
dp∑
j=1

u(p,j)(r)C
s,i
p,j s = 0, . . . , g (9)

where

u(s,i)(r) = rλg
∞∑
k=0

u
(s,i)
k rk u

(s,i)
k ≡ 0 k < λs − λg

with unknown vectorsu(s,i)k and coefficientsCs,ip,j which are to be determined. Relations (9)
can be presented in a matrix form, namely

Y s(r) = Us(r) +
s−1∑
p=0

LpY p(r)Csp (10)

Us(r) = rλg
∞∑
k=0

Us
k r
k (11)
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whereY s(r) andUs(r) ared × ds matrix functions,Csp, 0 6 p < s andUs
k aredp × ds and

d × ds constant matrices, respectively. Note that using the definition of the operatorLp we
can obtain an expression for the functionsY s(r) containing only functionsUp(r), 06 p 6 s
and matricesCpq . Really, as follows from (10)

Y s(r) = Us(r) +
s∑

p=1

p∑
k=1

∑̃
qi

LqkLqk−1 . . .Lq2Lq1U
s−p(r)Cq2

q1
. . . Cqkqk−1

Csqk (12)

where the sum with the ‘tilde’ means the summation over suchq1, . . . , qk thats − p = q1 <

q2 < · · · < qk 6 s − 1, and ats = 0 we haveY 0(r) = U0(r). Finally, using the definition (8)
we obtain

Y s(r) = Us(r) +
s∑

p=1

Us−p(r)
p∑
k=1

∑̃
qi

(qk + 1)(qk−1 + 1) . . . (q1 + 1)

k!
(ln r)k

×Cq2
q1
. . . Cqkqk−1

Csqk . (13)

Substituting (13) into equation (7) we obtain the following recurrence relations:

(k + λg − A0)U
p

k =
min(k,M)∑
l=1

AlU
p

k−l −
p∑
q=1

(p + 1− q)Up−q
k C

p
p−q (14)

wherek = λp − λg, . . . , N . As follows from the results of [9], power series in the expression
(11) for the functionsUr(r) converges uniformly in the whole interval(0,∞) and each column
of the d × ds-dimensional matrix functionY s(r) is a linear-independent solutiony(r) of
equation (7).

Thus it is clear that to calculate radial wavefunctions with any given accuracy at an arbitrary
point r̂, 0< r̂ <∞, it is sufficient to take into account only a finite numberN of terms in the
power series in (11). The value ofN is limited only by the computer resources and round-off
errors in the process of computations.

The procedure of the calculation of constant matricesU
p

k andCps , which completes the
calculation of the solutionsY s(r), is described in appendix B.

It is obvious that(d0+· · ·+dg) solutionsY 0(r), . . . Y g(r) of the equation (7) thus obtained
are linearly independent and the 2n-order matrix of the solutions and derivatives of equation (5)
assumes the following form (1k is the unitk × k-matrix):

8(r) =
(

1n 0
0 r−11n

)
T0(Y

0(r) . . . Y g(r)).

4. Construction of solutions in the neighbourhood of an irregular singularity atr =∞

In this section we describe a method enabling us to construct solutions of coupled radial
Schr̈odinger equations (5) in the form of asymptotic expansions in the neighbourhood of an
irregular singularity atr = ∞. We consider equation (5) for the functionF = rR, supposing
that the numberM > 0 is even (without loss of generality, since in the opposite case one can
make a substitutionr → r2).

In order to derive asymptotic expansions of the solutions we reduce equation (5) to the
first-order equations of the form

d

dr
g± ∼ r M2 −1(B±0 +B±1 /r +B±2 /r

2 + · · ·)g± r →∞ (15)

whereg(r) = T −1
∞ F(r), and matricesB±k andT∞ should be found.
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Let us introduce the differential-matrix operator:

D ≡ d2

dr2
+ r−1P(r)

d

dr
+ r−2Q(r)

where in the case of equation (5)

P(r) = w−1p0 = const≡ P0

Q(r) = w−1(q0 + q−1r + · · · + qMrM) ≡ Q0 + · · · +QMr
M.

We present it in the following form (factorization of the operatorD [10]):

D =
[

d

dr
− α(r)

] [
d

dr
− β(r)

]
whereα(r), β(r) are somen × n matrix functions to be found. It is easy to see that the
following relations hold:

Q(r)

r2
= α(r)β(r)− d

dr
β(r)

P (r)

r
= −[α(r) + β(r)].

The matrix equation of the Riccati type for the functionβ(r) follows from these equations,
namely:

dβ

dr
+

(
β +

P

r

)
β +

Q

r2
= 0. (16)

It is obvious that any solution of the equation

dF(r)

dr
= β(r)F (r)

is a solution of equation (5). At first we find from equation (16) the asymptotic expansion of
the functionβ(r) asr →∞:

β(r) ∼ r M2 −1(β0 + β1/r + β2/r
2 + · · ·). (17)

Substitution of the expansion (17) in equation (16) yields recurrence relations for matricesβk:

k∑
l=0

βlβk−l +QM−k + (P0 +M − 1− k)βk−M/2 = 0 k = 0, 1, . . . . (18)

Henceforth we suppose that all real eigenvalues of the matrixQM arenonzeroanddifferent.
Now we can determine such matrixT∞ that

T −1
∞ QMT∞ = diag(ε1, . . . , εn)

ε1 < ε2 < · · · < εn ε1, . . . , εn− < 0 εn−+1, . . . , εn > 0.

In order to resolve equation (18) with respect toβk it is convenient to make the following
substitution:

βk → Bk = T −1
∞ βkT∞ Qk → Q̃k = T −1

∞ QkT∞ P0→ P̃0 = T −1
∞ P0T∞.

Then, atk = 0 we obtain from equation (18)

B2
0 = −Q̃M = diag(−ε1, . . . ,−εn)

and we have two solutions for the matrixB0 which we mark by the superscripts ‘+’ or ‘−’:

B±0 = ±diag[(−ε1)
1/2, . . . , (−εn)1/2)]. (19)
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It is clear that there aren− real andn − n− purely imaginary eigenvalues on the diagonal of
the matrixB±0 .

Choosing one of two signs of the root in (19), it is easy to calculate all matricesB±k ,
k = 1, 2, . . . from relations (18), namely

(B±k )ij =
1

[(B±0 )ii + (B±0 )jj ]

[
Q̃M−k + (P̃0 +M − 1− k)B±k−M/2 +

k−1∑
l=1

B±l B
±
k−l

]
ij

. (20)

Now we have equation (15) for the functiong(r) = T −1
∞ F(r), where the number

q +1≡ M/2 is the rank of the singular pointr = ∞ of equation (15), and explicit expressions
(20) for matrices(B±k )ij in it. Then, using results of [11], we derive asymptotic expansion of
the fundamentaln× n matrixG±(r) of solutions of the equation (15) asr →∞:

G±(r) ∼ (R±0 +R±1 /r +R±2 /r
2 + · · ·)× exp

[ q∑
j=0

D±j
rq−j+1

q − j + 1
+D±q+1 ln r

−D±q+2/r −D±q+3/2r
2 −D±q+4/3r

3− · · ·
]
. (21)

Each column of the matrix functionG±(r) is a linear-independent solutiong±(r) of the
equation (15). MatricesR±k andD±k , k = 0, 1, 2, . . . , satisfy the following recurrence
relations [11]:

D0Rk − RkB0 =


0, k = 0
k−1∑
l=0

(RlBk−l −Dk−lRl)− (k − q − 1)Rk−q−1 k = 1, 2, . . . .

It is convenient to choose the following conditions:

D±0 = B±0 R±0 = 1 D±k = diag (R±k )ii = 0 k = 1, 2, . . .

then, for the diagonal matricesD±k and matricesR±k with diagonal elements which equal zero,
we have

(D±k )ii =
(
B±k +

k−1∑
l=1

B±k−lR
±
l

)
k = 1, 2, . . . (22)

in particular,(D±1 )ii = (B±1 )ii and

(R±k )ij =
1

[(B±0 )ii − (B±0 )jj ]
[ k−1∑
l=0

(R±l D
±
k−l − B±k−lR±l )− (k − q − 1)R±k−q−1

]
ij

i 6= j k = 1, 2, . . . . (23)

Thus, using (21)–(23) we determine the fundamentaln×2nmatrix of solutions of coupled
radial Schr̈odinger equations (5) in the neighbourhood of the irregular singularityr = ∞:

T∞ · (G+(r),G−(r)).

Finally, the fundamental 2n× 2nmatrix of solutions of equation (5) and their derivatives
(we obtain derivatives from the ‘truncated’ formula (15), multiplied from the left by the matrix
T∞) assumes the following form asr →∞:

8∞(r) ∼ (�∞(r),�+(r),�0(r),�−(r)).

Here each column of8∞ is composed of the functions and derivatives
(

F

dF/dr

)
and we designate

by�∞,�+,�0, and�− submatrices of the dimensions 2n×n−, 2n×n+, 2n×n− and 2n×n+,
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respectively(n− + n+ = n), whose columns contain the following factors:

exp

[
rq+1

q + 1
(+|ε1|1/2 + · · ·

]
, . . . exp

[
rq+1

q + 1
(+|εn−|1/2 + · · ·

]
exp

[
rq+1

q + 1
(+i|εn−+1|1/2 + · · ·

]
, . . . exp

[
rq+1

q + 1
(+i|εn|1/2 + · · ·

]
exp

[
rq+1

q + 1
(−|ε1|1/2 + · · ·

]
, . . . exp

[
rq+1

q + 1
(−|εn−|1/2 + · · ·

]
exp

[
rq+1

q + 1
(−i|εn−+1|1/2 + · · ·

]
, . . . exp

[
rq+1

q + 1
(−i|εn|1/2 + · · ·

]
.

The detailed structure of the submatrices is evident (see (21)).
Note that if matricesw, p0, q0, . . . , qM are real (usually this is the case in applications)

then it is easy to construct a real fundamental matrix8real
∞ (r) of solutions and derivatives. It

has the following form asr →∞:

8real
∞ (r) ∼ (Re�∞(r),Re�+(r),Re�0(r), Im�+(r)).

5. Matching of solutions. Singular eigenvalue problem

In this section we describe a method of matching of ‘left-hand’ and ‘right-hand’ solutions
enabling a solution of singular eigenvalue problems for the systems of coupled radial
Schr̈odinger equations.

Let us consider equation (5) for radial wavefunctionsF(r) with the following boundary
conditions imposed:

(∗) F (r)→ 0 asr → 0 (the conditions forF(r) to be bounded asr → 0 are also possible,
see e.g. [12,13]) and:

(a) asr →∞, |F(r)| decreases faster than any function of the formr−ρ , ρ > 0 or:
(b) asr →∞, F(r) is bounded.

Let us designate by theD-set of the problem the set of all values ofE, at which a nontrivial
solutionF(r) = F(r;E) of equation (5) exists satisfying boundary conditions(∗) and(a).
In turn, we designate by theDC-set the set of all values ofE at which a nontrivial solution
F(r;E) of equation (5) exists, satisfying conditions(∗) and(b). At last we define theC-set:
C-set= DC-set\D-set. In applicationsD- andC-sets are in fact the discrete and continuous
spectra, respectively. By the term ‘discrete spectrum’ we mean isolated eigenvalues from
the point spectrum. A somewhat different structure is implied by this term in the theory of
operators [14]. Note, that these definitions are convenient from the computational point of
view, but they are not mathematically rigorous (see e.g. [12]).

Remark 1. Continuous spectrum is absent whenM > 2, detqM 6= 0. More general boundary
conditions are allowed atr = ∞, but we assume, as usually is the case in physical applications,
thatqM < 0 atM > 2.

Solving of the eigenvalue problem is based on the matching of local solutions, which were
determined in the neighbourhoods of singular pointsr = 0,∞.

Linearly independent ‘left-hand’ solutions of equation (5) and their derivatives compose
some 2n × 2n matrix8(r) at a pointr. Solutions which behave correctly correspond to the
first n0 columns of8(r) (in fact, n0 = n but we write downn0 for the sake of generality)
and we denote this submatrix of the dimension 2n× n0 by80(r). Suppose then that we have
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computed with desired accuracy the series in the ‘left-hand’ solutions80(r) at some point
r̂ ∈ (0,∞), and let8̂0 ≡ 80(r̂).

Linearly independent ‘right-hand’ solutions and their derivatives compose at a pointr a
2n× 2n matrix8∞(r) which has the following form asr →∞:

8∞ ∼ (�∞(r),�+(r),�0(r),�−(r))

where dimensions of the submatrices�∞,+,0,− are equal to 2n × n−, 2n × n+, 2n × n−, and
2n × n+, respectively (heren−, n+ are the numbers of negative and positive eigenvalues of
the matrixw−1qM , n = n− + n+). The columns�∞(r) correspond to solutions which diverge
exponentially and columns�0(r) to exponentially decaying solutions asr → ∞. Columns
�±(r) correspond to oscillating solutions asr →∞. Suppose that we have calculated ‘right-
hand’ solutions with desired accuracy at the pointr̂ choosing it at a ‘sufficiently’ large distance
from the origin. If we are interested in the discrete spectrum we should compute the matrix
�̂0 ≡ �0(r̂), on the other hand, to determine the complete spectrum we should compute
matrices�̂±0 ≡ �±0(r̂).

Remark 2. In some cases it is impossible to match with desired accuracy the ‘left-hand’ and
‘right-hand’ solutions at a point̂r, then it is necessary to use either the power series expansion
for the fundamental matrix in the neighbourhood(s) of intermediate point(s) or a numerical
integration of (5) over the interval(r0, r∞), where0< r0 < r∞ <∞.

5.1. Discrete spectrum

At first we compose a matrixA of the dimension 2n× (n− +n0) from the matriceŝ�0 and8̂0

at some value of the energyE:

A = (�̂0,−8̂0) = A(E).
Let (n− + n0)-dimensional vectorsa(1), . . . , a(α) form a basis of the null-space of the matrix
A. It means that the following equality holds:

Aa(i) = 0 i = 1, . . . , α

α ≡ dim Ker(A) = (n− + n0)− rankA.
(24)

Note that ifα = 0 then such vectors do not exist, so this particular value ofE does not belong
to the discrete spectrum. We present vectorsa(i) in the following form:

a(i) =
(
a
(i)
∞
a
(i)
0

)
i = 1, . . . , α

where a(i)0 and a(i)∞ are n0-dimensional andn−-dimensional vectors, respectively. The
procedure of the calculation of an eigenvalueE = E0 from the discrete spectrum within
some interval(E

′
, E

′′
) is reduced to solving the equation

ω(E) = 0 (25)

where

ω(E) =
{

detA(E) if matrix A is quadratic

det[A∗(E)A(E)] if matrix A is not quadratic.

Then after determination of an eigenvalueE0 from equation (25) and solving equation (24)
we obtain a basis ofα linearly independent solutions of the equation (5) and their derivatives
for the valueE0 from the discrete spectrum:

φ(i)(r) =
{
�0(r)a

(i)
∞ , r > r̂

80(r)a
(i)
0 , r 6 r̂ i = 1, . . . , α. (26)
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5.2. Continuous spectrum

In the case of the continuous spectrum we compose a matrixB of the dimension 2n×(n+n++n0)

from the matriceŝ�±0, 8̂0 at a given value of the energyE from theC-set:

B = (�̂+, �̂0, �̂−,−8̂0) = B(E).
Let the vectorsb(j), j = 1, . . . , β of the dimension(n+n+ +n0) form a basis of the null-space
of the matrixB:

Bb(j) = 0 j = 1, . . . , β

β ≡ dim Ker(B) = (n + n+ + n0)− rankB.
(27)

Note, that ifβ = 0 then such vectors do not exist and this value ofE does not belong to the
spectrum of the problem. Similar to the problem of the discrete spectrum we present vectors
b(j) in the form:

b(j) =
(
b
(j)
∞
b
(j)

0

)
j = 1, . . . , β

whereb(j)0 , b(j)∞ aren0-vectors and(n + n+)-vectors, respectively. Then, solving equation (27)
with respect tob(j), we obtain a basis ofβ linearly independent solutions of the equation (5)
and their derivatives corresponding to a given valueE from the continuous spectrum:

φ(j)(r) =
{
80(r)b

(j)

0 r 6 r̂
(�+(r),�0(r),�−(r))b(j)∞ r > r̂

j = 1, . . . , β. (28)

5.3. S-matrix, in(out)-solutions

In this section we construct anS-matrix and in(out)-solutions for a given valueE from the
continuous spectrum (we setn0 = n). It is convenient to represent 2n × (2n + n+) matrixB
and vectorsb1, . . . , bn+ from (27) in the following form:

B = (�̂−, �̂+, �̂0,−8̂0) ≡ (�̂−, 4)
where4 is a(2n× 2n) matrix and

(b(1), . . . , b(n+)) =
(

1n+

X

)
≡
(

1
X

)
whereX is a 2n× n+ matrix to be determined. We have

B

(
1
X

)
= 0.

Hence

X = −4−1�̂−.

Let columns of the matrixT∞ be normalized and

kα ≡ −i(B+
0 )n−+α,n−+α = kα(E) vα ≡

∣∣∣∣dkαdE

∣∣∣∣−1

= vα(E) α = 1, . . . , n+.

Then, coefficients

6αβ ≡ Xαβ
∣∣∣∣vαvβ

∣∣∣∣1/2 α, β = 1, . . . , n+

determine some unitary matrix6 = (6αβ) = 6(E) that describes the scattering. Since this
matrix is determined with no relation to the initial three-dimensional Hamiltonian (2), it may
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differ from the true partialS-matrix. This is evident in the case of radial equations describing
a ‘scalar’ particle (n = 1) in a spherically symmetric potential. In this case6 = −ηS,
whereη = (−1)l+1. A similar example (n = 2, 6 = (−1)(l+1)S) is presented in section 6.
Choosing vectorsb(1), . . . , b(n+) in the form of

(1
X

)
, we obtain partial in-solutions in (28). Out-

solutions are constructed analogously. All these scattering statesF in(out)
α (r;E) are normalized

to 2πvαδ(E − E′)δαβ (r̂ → ∞). In the case of a real Hamiltonian these solutions are the
complex conjugate of each other and matrices6 andS are symmetric.

Using a procedure which is analogous to the one of section 5.1, it is possible to calculate
the poles of anS-matrix at complex energiesζ = E + iG, (G < 0) and the corresponding
eigenfunctions, i.e. resonance states; besides, if required, one can calculate antibound states
[3,15] at real energies.

6. Example of applications: discrete and continuum hole Coulomb states

In this section the method is applied to solving the Schrödinger equation in the case of a matrix
Hamiltonian with a nontrivial ‘spin–orbit-coupling’ term and Coulomb potential energy term,
namely the Luttinger Hamiltonian [1]. This Hamiltonian describes hole Coulomb states, like
shallow acceptor or exciton states in semiconductors with degenerate valence bands.

In the framework of the so-called spherical approximation [16], the Luttinger Hamiltonian
can be written as [16,17]

H = p2 − µ(P (2) · J (2)) +
2Z

r
. (29)

Hereh̄p is the momentum operator;P (2) andJ (2) are irreducible spherical tensor operators
of the second rank [7], derived from the components ofp, and the vectorJ representing the
pseudospin angular momentum withj = 3

2; µ = (4γ2 + 6γ3)/5γ1, whereγi are empirical
constants—so-called Luttinger parameters of the valence band [1]; the energy and the distances
are measured in units ofRa = m0e

4/2h̄κ2γ1 and ofa = h̄κγ1/m0e
2 respectively,m0 is the

mass of a free electron,κ is the static permittivity of the crystal,Z is the magnitude of the
impurity ion charge.

The Hamiltonian (29) is spherically symmetric in the coupled orbital and spin spaces and
the total angular momentumF = L+J is a constant of motion. Wavefunctions can be written
as [17]

9 = r−1{(βFH + FL)|ljfmf 〉 + (FH − βFL)|l + 2, jfmf 〉} (30)

where the functions|ljfmf 〉 are eigenfunctions of the total angular momentum in thel–
j coupled scheme,FH(r) and FL(r) are the ‘heavy-’ and ‘light-hole’ radial functions,
respectively, and the constantβ = 3l−f+1[(f + 3

2)/(f − 1
2)]

1/2. Then the Schr̈odinger equation
is reduced to coupled sets of radial equations (5) (M = 2, n = 2), whereF = (FH

FL

)
, with a

diagonal matrixw: w = diag(1− µ, 1 +µ). Each set is characterized by a given value off

and the parity(−1)l .
It is interesting to note that in the present case equation (5) is similar to a system of two

coupled ‘hydrogen-like" radial equations with two different masses of the particle, namely
1/(1− µ) (heavy hole) and 1/(1 +µ) (light hole) and with a coupling which arises due both
to the potential energy term and to terms containing differential operators.

The results of sections 3–5 give a complete solution to the problem of finding discrete and
continuum eigenstates of the Hamiltonian (29). Below we present results of calculations for
states withf = 3

2 andl = 0. In this case matrices of coefficients in (5) are as follows:

p0 =
(

0 3µ
−3µ 0

)
q0 =

(−µ− 2 2− µ
µ + 2 µ− 2

)
q1 = 2Z q2 = E.
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Table 1. Energies (in the units ofRa) of discrete states (f = 3
2 , l = 0). ‘Material’ parameters:

Z = 1,µ = 0.766.

Level number 1 2 3 4 5

Present method −2.2637 −0.6728 −0.3453 −0.2107 −0.1424
[18,19] −2.264 −0.673 −0.347 — —
Level number 6 7 8 9 10
Present method −0.1026 −0.0881 −0.0764 −0.0599 −0.0481

In table 1 we present results of the calculation of energies of the ten lowest discrete states
which are characterized by the valuesf = 3

2, l = 0 and material parametersZ = 1,µ = 0.766
in the Hamiltonian (29). Note that these values are in fact the energies of even states of shallow
acceptor impurities in Ge, the lowermost of which is the ground state energy. For a comparison
we also present available data of the previous calculations based on the numerical integration of
coupled radial Schrödinger equations [18,19]. All digits in the results of the present calculation
are significant and there is a natural way to control errors in our calculations: the results must
be stable when changing the matching point. Note that simultaneously with the energies of
discrete levels we have determined analytically defined (sections 3–5) wavefunctions.

As follows from the results of section 5, to calculate the wavefunctions of the continuous
spectrum of the Hamiltonian (29) one should match two ‘left-hand’ solutions of (5) and
linear combinations of four linearly independent ‘right-hand’ solutions. We choose linear
combinations of ‘right-hand’ solutions that yield radial in-solutions, whose asymptotic
behaviour (r →∞) is as follows:

F in
H (r) ∼

i−l

2ikH

(
(−1)l+1 exp(−ikH r) + SHH exp(ikH r)(

1−µ
1+µ

)1/4
· SLH exp(ikLr)

)

F in
L (r) ∼

i−l

2ikL

( (
1+µ
1−µ

)1/4
· SHL exp(ikH r)

(−1)l+1 exp(−ikLr) + SLL exp(ikLr)

) (31)

wherekH,L = (E/(1∓ µ)1/2, coefficientsSαβ , α, β = H,L are the elements of the partial
S-matrix which corresponds to a given value off and the parity.

Since the radial Hamiltonian is real, theS-matrix is symmetric:

Sαβ = Sβα α, β = H,L. (32)

For theS-matrix is unitary and symmetric, we have

SLL = −S̄HH SHH
S̄LH

. (33)

In table 2 the results of calculations are presented of the partialS-matrix as a function
of the energyE for the states of continuous spectrum which are characterized by the same
values of quantum numbers as in table 1:f = 3

2, l = 0 and the same material parameters:
Z = 1,µ = 0.766. It corresponds to scattering of holes by attractive Coulomb potential of an
impurity ion in Ge.

Only values of elementsSHH andSHL are presented in the table because the rest of them is
determined unambiguously by relations (32) and (33). All digits in results presented in table 2
are significant. In the present case of states of continuous spectrum both unitarity + symmetry
of Sαβ and stability of results when changing the matching point can be used to control errors
in computations.
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Table 2. PartialS-matrix as a function of the energy (E in the units ofRa) for the state withf = 3
2 ,

l = 0. ‘Material’ parameters:Z = 1,µ = 0.766.

E SHH SHL

0.5 −0.847 91− i0.517 51 −0.083 32− i0.079 27
1.0 −0.670 08− i0.726 29 −0.142 72 + i0.055 87
2.0 −0.488 17 + i0.852 49 −0.142 07 + i0.121 52
5.0 −0.835 75 + i0.512 46 −0.166 63 + i0.105 57

10.0 −0.983 66− i0.026 32 −0.170 95 + i0.049 92
20.0 −0.815 13− i0.560 22 −0.147 32− i0.003 87
50.0 −0.300 82− i0.947 83 −0.096 94− i0.041 60

100.0 +0.098 96− i0.991 96 −0.062 90− i0.047 58
500.0 +0.691 79− i0.721 11 −0.018 56− i0.032 81

7. Conclusions

A numerical-analytical method has been developed for solving a Schrödinger equation, when
a matrix Hamiltonian is a quadratic form of the momentum and contains the potential
energy term of a rather general form, in particular, Coulomb and polynomial potentials.
Reduction to a system of coupled radial equations is described and the behaviour of radial
functions asr → 0 and r → ∞ is explicitly derived. A method of solving coupled
radial Schr̈odinger equations, based on the matching of exact solutions, constructed as
algebraic combinations of convergent power series and logarithmic function, and of asymptotic
expansions of solutions in the neighbourhood of an irregular singularity atr = ∞ has been
developed. Using the matching method one can calculate the following for radial matrix
Hamiltonians: (1) in/out-solutions, (2)S-matrix, (3) poles of resolvent with corresponding
eigenfunctions, in particular, poles ofS-matrix—bound, antibound and resonance states
included.

The wavefunctions calculated are represented in analytical form.
The method is applied to solving Schrödinger equation in a case of matrix Hamiltonian [1]

describing discrete and continuum Coulomb states of charge carriers in semiconductors with
degenerate valence bands. Analytical expressions for the wavefunctions have been derived,
the energies of ten lowest discrete states of definite symmetry have been calculated and partial
S-matrix, describing the scattering of holes by Coulomb potential of an impurity ion, has been
calculated for the first time.

We note in conclusion that the method of matching can be extended to the following
important cases:

(1) Matrix potentials of the form

V (r) ∼
∞∑

k=−1

Vk(θ, φ,L)r
k r → 0

V (r) ∼ rv
∞∑
k=0

Ṽk(θ, φ,L)r
−k r →∞ 06 v = integer.

(2) Problems on intervals(a, b), where−∞ 6 a < b 6 +∞.

(3) First-order Dirac-type equations.
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Appendix A. The structure of the leading matrix α0

In this appendix we show that in case of Hamiltonians under consideration matrixα0 is a
simple one and all its eigenvalues are certain integers.

Let us first consider indices(l, τ ) of the vector-functionF(·) in equation (5). Let quantum
numbersl1, l2, . . . , ln0 be presented in the indices(l, τ ) respectivelyν(1), ν(2), . . . , ν(n0)

times, i.e.n0 is the number of different values ofl in the indices ofF(·). Letl1 < l2 < · · · < ln0.
Obviously,

∑n0
k=1 ν(k) = n, i.e. ν(k) is a multiplicity of τ for a givenlk. According to the

Wigner–Echart theorem [7] and using the form of the matrixα0 along with the following
relations for the reduced matrix elements:

〈l‖p2‖l′〉rζ ∝ rζ−2(ζ − l)(ζ + l + 1)δll′

〈l‖P (2)‖l′〉rζ ∝ rζ−2


(ζ − l)(ζ + l + 1), l′ = l
(ζ + l + 1)(ζ + l + 3), l′ = l + 2

(ζ − l)(ζ − l − 2), l′ = l − 2

we obtain that if the indices ofF(·) are ordered in a definite way, namely, when the index
i = (l, τ ) increases the value ofl does not decrease, the following properties hold:

(1) lk = l1 + 2(k − 1), k = 1, . . . , n0.

(2) The eigenvalues of the matrixα0 are the following numbers (corresponding multiplicities
are written down in parenthesis):

l1 + 1(ν(1)), . . . , ln0 + 1(ν(n0)),−l1(ν(1)), . . . ,−ln0(ν(n0)).

(3) Corresponding linear-independent eigenvectors of the matrixα0 compose a 2n×2nmatrix
of the form (

X Y

XD YD̃

)
where

X =


1ν(1)

1ν(2) ∗
. . .

0 1ν(n0)

 Y =


1ν(1)

1ν(2) 0
. . .

∗ 1ν(n0)


D = diag( l1 + 1︸ ︷︷ ︸

ν(1)times

, . . . , ln0 + 1︸ ︷︷ ︸
ν(n0)times

) D̃ = diag( −l1︸︷︷︸
ν(1)times

, . . . , −ln0︸︷︷︸
ν(n0)times

)

aren× n matrices and 1k is the unitk × k matrix.

(4) As follows from item (3) matrixα0 is a simple one—it is similar to a diagonal matrix.
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Appendix B. Calculation of matricesUp
k andCp

s

We putUp

k ≡ 0, if k < λp − λg. Note that matricesUp

λp−λg are defined ambiguously. For
definiteness we set them in the following form:

U
p

λp−λg =
( 0

1
0′

)
(B1)

where 0, 0′ are zero matrices of the dimensions equal to [(
∑p−1

k=0 dk)×dp] and [(
∑dg

k=p+1 dk)×
dp], respectively, 1 is the unit(dp × dp)-matrix.

Let us consider equation (14) successively for eachp = 0, 1, . . . , g. If p = 0 then all
matricesU0

k , k = λ0 − λg + 1, . . . , N are easily calculated.

The casep > 0. If k 6= λt − λg for any t , 0 6 t < p in equation (14) then the calculation
of matricesUr

λt−λg is straightforward.
If k = λt − λg for somet , 0 6 t < m, then the determination ofUm

λt−λg becomes more
complicated. Using the fact that matricesUm

k ,Cml (k < λt−λg, l > t)were already determined
we obtain

(λt − A0)U
m
λt−λg = −(t + 1)Ut

λt−λgC
m
t +Hm

t (B2)

where

Hm
t =

min(k,M)∑
l=1

AlU
m
k−l −

m∑
p=1

(m + 1− p)Um−p
k Cmm−p.

It is convenient for further consideration to rewrite equation (B2) using index notations:

(λt − A0)ii(U
m
λt−λg )ii ′ = −(t + 1)

dt∑
j=1

(Ut
λt−λg )ij (C

m
t )ji ′ + (H

m
t )ii ′ . (B3)

As is easily seen, the left-hand side of equation (B3) equals zero for a given indexi ′ when
i = d0 + · · · + dt−1 + 1, . . . , d0 + · · · + dt−1 + dt . Therefore, in this case we put

(Um
λt−λg )ii ′ = 0 (B4)

and using our definition (B1) we can calculatedt values of(Cmt )ji ′ corresponding just to these
values of the indexi:

(Cmt )ji ′ =
(Hm

t )d0+···+dt−1+j,i′

t + 1
.

Then using equation (B4) in the case when indexi 6= d0 + · · ·+dt−1 +1, . . . , d0 + · · ·+dt−1 +dt
we have

(Um
λt−λg )ii ′ =

(Hm
t )ii ′

(λt − A0)ii
.

Finally, changing the value of indexi ′ step by step from 1 tod, k from λm − λg toN ,m from
0 tog we compute all the matrices we need.
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